Le moteur MINATO

Comment marchent les aimants en mouvement ?

magnet_minato_lab1Le moteur magnétique de Minato diffère complètement des quatre autres principaux types de moteurs répandus aujourd’hui. Les systèmes les plus modernes, AC [courant alternatif], DC [courant continu], servo ou pas à pas, utilisent tous fondamentalement le même principe de force électromagnétique d’attraction qui fut découvert il y a près de 200 ans. Leur conception implique des pertes considérables dues aux bobinages aux noyaux et aux courants vagabonds, qui se transforment en chaleur.

Le moteur de Minato utilise la répulsion comme source d’énergie du noyau. Il subit très peu de pertes, ne chauffe pratiquement pas et a un rendement de 330 %, incomparablement supérieur aux moteurs conventionnels.
La plupart des ensembles d’essai de Minato comprennent un rotor non magnétique en trois couches garni de puissants aimants Sumitomo Neomax (néodyme/fer/bore) placés tous les 175 degrés et couvrant 5 degrés d’angle de la circonférence du rotor [Ndt : soit 5° de passage à chaque demi-tour]. Les aimants ont une force de 5 000 gauss et interagissent par répulsion avec deux stators électromagnétiques diamétralement opposés.

Les électroaimants du stator repoussent les aimants permanents de rotor, et comme ceux-ci sont placés en oblique, la répulsion est tangentielle et provoque la rotation. Les électroaimants reçoivent des impulsions à des intervalles et pendant des durées spécifiques, (environ 10 millisecondes au démarrage, diminuant à 2 ms lorsque le rotor atteint sa vitesse de croisière), de manière à assurer qu’ils ne sont actifs que lorsqu’ils sont en face d’un aimant de rotor en fuite. De nombreux inventeurs ont précédemment essayé de construire des moteurs magnétiques, mais Minato est le seul à avoir trouvé les solutions à certains problèmes.

magnet_minato_opposing_wheels

La première est le recours à la répulsion et non l’attraction, ce qui réduit l’énergie d’entrée nécessaire. Ensuite, l’angle de positionnement des aimants sur le rotor, calculé exactement pour produire un effet de ricochet entre les champs respectifs du rotor et du stator, de sorte que l’un « rebondit » sur l’autre, produisant la force motrice. Enfin la puissance des aimants ; et il a fallu l’apparition, dans les années 1980, des aimants au néodyme pour rendre la chose possible.

magnet_minato_lab4La structure nord-sud de n’importe quel aimant peut être conservée en construisant le rotor en trois couches : dans la couche supérieure les aimants Neomax ont le pôle nord vers l’extérieur, suit une couche non magnétique, et dans la troisième les aimants ont le pôle sud vers l’extérieur (c.à.d. vers le centre du rotor). Ces couches sont alignées sur les pôles opposés nord-sud des deux électroaimants. Le temps d’excitation des électroaimants constitue la clef qui permet d’obtenir le « point sensible » produisant la répulsion entre stator et rotor.

La cadence est assurée par des détecteurs qui reçoivent les signaux de balises juste avant que se présente magnet_minato_lab8chaque aimant du rotor. Le rotor est démarré et stoppé en appliquant et en interrompant l’énergie aux deux électroaimants du stator. Après un temps de décélération, le rotor s’arrête en alignant ses aimants sur les noyaux de fer des deux électroaimants du stator.

Source: http://tesla3.com/energy/f_magnet_minato.html
(Source : John Dodd avec autorisation de réimpression de J@pan Inc. Magazine, édition de mars 2004 page web : http://www.japaninc.com/technology/index.php)
Traduction André Dufour

Une réponse à “Le moteur MINATO

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s